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Introduction
A fundamental problem in the study of biological systems is to uncover the 
structure and logic of gene regulatory networks (GRNs) among thousands 
of genes and their RNA and protein products1,2. Stem cells and regenerative 
medicine, along with novel approaches to cancer differentiation therapy, are 
possible medical implications of this line of research3,4,5.

One relevant network topology for investigating the dynamics of GRNs 
is a cyclic topology. Many biologically relevant phenomenons, including 
oscillations in gene expression levels or protein concentrations, can be mod-
eled by the presence of at least one negative feedback loop in the regula-
tory network. Furthermore, rings with odd numbers of genes, where each 
gene represses their successor in the cycle, can be viewed as the source 
of non-trivial dynamical behavior in these networks, since without loops 
only a unique fixed point can be reached6. Processes that are assumed to 
be bistable, such as decision circuits in cellular differentiation7, can also be 
modeled using rings of repression with an even number of genes. Modeling 
GRNs with a ring topology is therefore a useful approach for developing a 
deeper understanding of the dynamics generated by certain networks.

Recently, gene expression has been shown to be a stochastic process, as 
genes generally exist in low copy numbers in a cell8,9,10. Therefore, in order 
to model gene expression correctly, one has to use a realistic model where 
the dynamics of the system are driven by a stochastic simulation algorithm 
(SSA)11,12.   

This study will focus on ring networks, coupled by direct repression, 
and simulated using a SSA. Specifically, the resulting dynamics of coupling 
stochastic gene rings, as well as perturbations to bistable rings, will be inves-
tigated with an emphasis on the relevance to biotic systems.

Background
Modeling biochemical networks requires a system of equations. Often, a 
deterministic approach in which a set of ordinary differential equations 
(ODEs) is used, where if there are N chemically active molecular species 
present, then the set will contain N differential equations12. Reaction con-
stants here are reaction rates and molecular species concentrations are rep-
resented by continuous single valued functions of time. In this case, each 
equation accounts for the time rate of change in concentrations of one spe-
cies (e.g. a particular mRNA or protein) as a function of the concentrations 
of all the species in the reaction network12. Models that use this approach are 
known as “rate equation models” and are appropriate for systems with large 
numbers of molecules where fluctuations are negligible13. 

However in GRNs, genes, mRNAs, and proteins often exist in low copy 
numbers and the fluctuations are non-negligible. To appropriately account 
for fluctuations in systems such as these, stochastic approaches, such as sim-
ulations of the chemical master equation (i.e. a single differential difference 
equation) must be used13. Here, reaction constants are taken as probabilities 
per unit time. In this stochastic formulation of chemical kinetics, which is 
has now also been shown to be necessary in the analysis of GRNs under 
conditions of high concentrations (e.g. when active proteins appear in high 
numbers)14, the time evolution of the system is described by the chemical 
master equation12. This master equation measures the probability of finding 
various molecular populations at each instant of time and usually, if more 
than a few chemical species are present, the Markov process that it describes 
is numerically simulated via Monte Carlo techniques (rather than solved 
analytically) to obtain the dynamics of the system12. 
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Modelling strategy
Periodic boundary conditions are assumed, which here means that the pro-
teins of gene i repress gene i + 1 by direct binding. Each gene in the ring is 
represented by the following set of equations11:

                                                                                                                                        

The reactant side of Equation (1) is describing the binding of an RNA 
polymerase to the promoter region of the DNA of the gene in question. On 
the product side, the RNA polymerase is unbound from the promoter, and a 
protein is produced. Modeling these multiple events in a single reaction step 
reduces the computational time of the simulations.   

The binding and unbinding of the repression protein from gene i to the 
promoter of gene i + 1, is described by Equations (2 and 3), respectively.
     Equation (4) is required to allow the protein to decay while still bound 
to the promoter at the same rate as when not bound. Without this reaction, 
when a protein is bound to a promoter it would not decay, and therefore 
would serve as a “protection” against decay.

The final reaction, Equation (5), simply describes the decay of a protein 
due to use in some biological processes, or the unavailability of the protein 
due transport outside of the region containing the GRN under investiga-
tion.  

For simplicity, only the symmetric case where each gene is identical (i.e. 
in rates constants, number of promoters, etc.) to the other genes in the loop 
is considered. 

 The dynamics of this model are simulated using SGN Sim15, which here 
stochastically simulates Equations (1-5) of the rings for the number of genes 

in question.
1000 simulations were conducted for each case on a Pentium 4, at 1.73 

GHZ with 1 GB of RAM for 5000 s of simulation time, and unless oth-
erwise indicated, with the following parameters: ki = 0.1 s-1, ki+1,i = 10 s-1, 
ki,i+1 =  0.001  s-1, kd,i = 0.1 s-1. 

Availability: All rings/reaction .g files are available at: http://www.ucal-
gary.ca/~dacharle/researchdocs.htm. SGN Sim is freely available for down-
load15.

Coupling Strength

From the set of reactions in Equations (1-5) which describe the ring sys-
tems studied here, there is one reaction which is responsible for binding of 
the repressor protein, Equation (2) (with rate constant ki+1,i), and another, 
Equation (3) (with rate constant ki,i+1), for unbinding. The quantity, coupling 
strength (CS), is defined as a ratio of these two rate constants16:

CS = ki+1,i / ki,i+1						      (6)

Coupling strength provides an approximation of the fraction of the time 
that a gene is expected to be repressed by the binding of a protein resulting 
from the expression of a previous gene in the cycle. The higher the coupling 
strength, the more coupled the genes are since their dynamics are more 
interdependent. 

Results and discussion
In rings with odd numbers of genes, limit cycle oscillations are obtained 
(Figure 1). However, in rings with even numbers of genes, steady states 
emerge in which either odd or even genes are expressed and the others 
repressed (Figure 2). The above results were previously obtained using a 
system of differential equations17, as well as a stochastic approach13, and are 
here matched qualitatively in order to validate the modeling strategy and 
parameters used in this study.

Rings with even numbers of genes were subject to a perturbation of 
1000 proteins of gene 2 introduced into the system at 3000 s of simulation 
time. This perturbation resulted in toggling between two possible steady 
states (Figure 3) in a percentage of the runs for each case examined (Table 
1). Below a CS of 10, the system began to converge to a single steady state 
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Figure 1 Limit cycle oscillations in a 3 gene ring. As the proteins (p2) from 
the expression of gene 2 build up in the system, they repress the p3 expres-
sion of gene 3, which subsequently allows for p1 expression of gene 1, and 
so forth.

Figure 2 Even gene steady state in a 4 gene ring. Protein expression (p1 
and p3) of the odd genes is completely repressed by expression (p2 and p4) 
of the even genes. Once in the steady state (at approximately 200 s), the 
system remains in this state for the duration of the simulation.
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where all genes were being expressed at around the same level and were not 
affected by systematic perturbations, and in trials above a CS of 1000, the 
system toggled in less than 10% of runs (data not shown). Here, toggling 
due to the perturbation was only considered for the odd gene steady state 
because the perturbation chosen adds additional proteins associated with 
gene 2, whose protein products repress gene 3. This perturbation results in 
strengthening the even genes’ repression of the odd genes and therefore tog-
gling never occurred from an even to odd gene expression state. Because of 
the this, the percentage of toggles for a given CS for an even gene ring would 
be half the values shown in Table 1 if both states were considered.  

Coupling of bistable gene rings (Figure 4) yielded the following dynam-
ics: coupling of 2 odd gene rings resulted in limit cycle oscillations, even-odd 
coupling in a single steady state, and even-even coupling in multiple steady 
states. For all runs involving coupled odd gene rings, limit cycle oscillations 
with the following pattern resulted: genes 2 and 4 “up” (i.e. high protein 
expression levels) and the others repressed, followed by gene 1 up, followed 
by genes 3 and 5 up. In all simulations for the even-odd coupled gene rings, a 
single steady state in which genes 2,4,6, are highly expressed, was obtained. 
In the final case, involving even-even coupling, the system was observed 

to reach one of 3 steady states (Figure 5) after a small transient, where the 
following genes were highly expressed (and the others repressed): genes 1 
and 3 (96% of runs), genes 2, 5, and 7 (3% of runs), and genes 2,4, and 5 (1% 
of runs). Note that in 7% of  instances when the system was in the genes 1 
and 3 up state, gene 6 was expressed for roughly the first 1000 s and then 
was abruptly repressed to a zero level of expression. Since the expression of 
gene 6 was always associated with the gene 1 and 3 up state, where these 
genes continued to be expressed even after gene 6 was repressed, it was not 
considered to be a unique steady state of the system.  

Conclusions
Studying GRNs in a cyclic topology where the system’s dynamics are sto-
chastically simulated is a useful approach for investigating genetically con-
trolled behavior. 

 In the case where rings with an even number of genes were subject to 
systematic perturbations for a wide range of CSs, it was found that these 
bistable rings of repression only toggled from one steady to another in 3% 
to 15% (as a function of CS) of simulations. This result lends support to the 
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Figure 3 A perturbation of 1000 proteins (p2) introduced at 3000 s results 
in toggling of the steady state in a 4 gene ring. The system starts off in the 
odd steady state (i.e. odd genes expressing and even genes repressed) but 
toggles to the even steady state as a result of the perturbation.

Figure 4 Coupling diagrams of a) odd-odd gene rings, b) odd-even gene 
rings, and c) even-even gene rings. The flat-headed arrows denote negative 
regulation resulting from the binding of a protein from the expression of 
the previous ring in the cycle.

Figure 5 One of 3 possible steady states of an even-even coupled gene ring. 
In this steady state, genes 2 and 5 are expressing at twice the level of the 
gene 7, and the other genes are completely repressed.

Table 1 Toggling between steady state percentage in an even gene ring 
of repression as a function of coupling strength. 1000 simulations were 
conducted for each case.



16 Canadian Undergraduate Physics Journal Volume VIII    Issue 2    May 2010

Daniel Charlebois Dynamics of stochastic gene rings

hypothesis that bistable genetic subcircuits that control downstream genes 
are stable, and therefore robust to noise and perturbations, allowing them 
to act as cellular memory unit once a “decision” (e.g. which path a stem 
cell will follow into a distinct cell type) is made10. Note that these results 
were obtained within an appropriate context, as the stochasticity in the ini-
tial decision, and the biochemical dynamics of the system afterwards, were 
accounted for by the SSA. 

Uncovering the dynamics resulting from the coupling of genetic oscilla-
tors is important for understanding rhythmic phenomenon in living organ-
isms and has many potential applications in bioengineering18. The results 
for coupled gene rings in this study show that distinct dynamics, such as 
limit cycle oscillations, monostability, and tristability, can result from the 
coupling of GRNs (which could occur, for example, in cell-cell communi-
cation where signaling molecules produced from GRNs are able to  move 
between neighboring cells via gap junctions or bind directly to a surface 
cell receptor (as occurs in the yeast Saccharomyces cerevisiae when some cells 
send a peptide signal in order to induce other members of the population 
to prepare for mating19) and is another step towards understanding more 
complex GRN dynamics.

Directions for future work involve investigating the effects of cross links 
within gene rings as well as research focused around system transient times; 
other relevant topologies for investigating GRN dynamics are also being 
considered. 
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Glossary
Gap junction. A channel present in some cell types which allows ions and 
small molecules to flow between adjacent cells.

Promoter.  A DNA sequence to which an RNA polymerase molecule initially 
binds during the initiation steps of transcription. 
                           
Transcription.  The biosynthesis of an RNA copy of a DNA template strand 
catalyzed by RNA polymerase.

Translation.  The biosynthesis of a protein from messenger RNA catalyzed 
by ribosomes.
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